Here's what you'll hear when you first get into machine learning.

- Neural networks
- Loss
- Weights
- Biases
- Epochs
- Neurons
- Optimizers
...

It can get very confusing really fast!

Here are some of the terms you should know about.
(I wish I had this before)

🧵👇

These terms won't mean anything unless you know what Machine learning is all about.

> Machine learning is the process of making a program which allows a computer to learn from data.

The data could be anything, images, audio or even text.
In machine learning we use something called a neural network, this is essentially an imitation of the human brain.

> Neural Networks are a digital imitation of the neurons you see in the human brain.
In these neural networks, data flows through them and each neuron (the circle) has a numerical value which will change.

> The value of a neuron gets changes to something which is close to what we want each time the data passes through the neural network.
Think of the neurons as dials on a lock, you have to tune every dial to open the lock.

It is almost impossible for a human to tune thousands of dials like these, but a computer certainly can.
Once the dials are well tuned, you have a well trained neural network!

Each dial's numeric value is dependent on a "weight" and a "bias". The weight determines how important the neuron is and the bias make it flexible.
So here's a recap of what we've looked at so far:

The neural net is the brain of the machine learning model, the dials you have to adjust to make that neural net work are the neurons.
Let's move on🔥

👇
Each time data passes through the neural network, we get to know how wrong it is. The measure of how wrong a neural network is called the "loss". The neural network uses this thing called an "optmizer" to reduce "loss" and tries to get less wrong after each iteration.
The number of times the data passes through the neural net is called the "epoch".

That was a lot! Let's summarize👇
Neural Network: The brain of our machine learning model
Neuron : Each dial in a neural network
Weight : How important the neuron is
Bias : Flexibility of neuron
Epoch : Number of times the data passes through the neural network
Loss : How wrong the neural net is
Optimizer : Tries to reduce loss and make the neural net less wrong
Now some FAQs
> How to get started with machine learning?
Here👇

https://t.co/s5o54jt5oc
Which language to learn for machine learning?
> Python is the most common and well known, It would be my pick.

https://t.co/sey373KUpV
I don't have a powerful PC, how do I get into machine learning?
> You don't need one, use Google Colab.

https://t.co/ATd8YNZppb

More from Pratham Prasoon

More from Machine learning

Starting a new project using #Angular? Here is a list of all the stuff i use to launch my projects the fastest i can.

A THREAD 👇

Have you heard about Monorepo? I created one with all my Angular (and Nest) projects using
https://t.co/aY5llDtXg8.

I can share A LOT of code with it. Ex: Everytime i start a new project, i just need to import an Auth lib, that i created, and all Auth related stuff is set up.

Everyone in the Angular community knows about https://t.co/kDnunQZnxE. It's not the most beautiful component library out there, but it's good and easy to work with.

There's a bunch of state management solutions for Angular, but https://t.co/RJwpn74Qev is by far my favorite.

There's a lot of boilerplate, but you can solve this with the built-in schematics and/or with your own schematics

Are you not using custom schematics yet? Take a look at this:

https://t.co/iLrIaHVafm
https://t.co/3382Tn2k7C

You can automate all the boilerplate with hundreds of files associates with creating a new feature.
With hard work and determination, anyone can learn to code.

Here’s a list of my favorites resources if you’re learning to code in 2021.

👇

1. freeCodeCamp.

I’d suggest picking one of the projects in the curriculum to tackle and then completing the lessons on syntax when you get stuck. This way you know *why* you’re learning what you’re learning, and you're building things

2.
https://t.co/7XC50GlIaa is a hidden gem. Things I love about it:

1) You can see the most upvoted solutions so you can read really good code

2) You can ask questions in the discussion section if you're stuck, and people often answer. Free

3. https://t.co/V9gcXqqLN6 and https://t.co/KbEYGL21iE

On stackoverflow you can find answers to almost every problem you encounter. On GitHub you can read so much great code. You can build so much just from using these two resources and a blank text editor.

4. https://t.co/xX2J00fSrT @eggheadio specifically for frontend dev.

Their tutorials are designed to maximize your time, so you never feel overwhelmed by a 14-hour course. Also, the amount of prep they put into making great courses is unlike any other online course I've seen.

You May Also Like

Great article from @AsheSchow. I lived thru the 'Satanic Panic' of the 1980's/early 1990's asking myself "Has eveyrbody lost their GODDAMN MINDS?!"


The 3 big things that made the 1980's/early 1990's surreal for me.

1) Satanic Panic - satanism in the day cares ahhhh!

2) "Repressed memory" syndrome

3) Facilitated Communication [FC]

All 3 led to massive abuse.

"Therapists" -and I use the term to describe these quacks loosely - would hypnotize people & convince they they were 'reliving' past memories of Mom & Dad killing babies in Satanic rituals in the basement while they were growing up.

Other 'therapists' would badger kids until they invented stories about watching alligators eat babies dropped into a lake from a hot air balloon. Kids would deny anything happened for hours until the therapist 'broke through' and 'found' the 'truth'.

FC was a movement that started with the claim severely handicapped individuals were able to 'type' legible sentences & communicate if a 'helper' guided their hands over a keyboard.
https://t.co/6cRR2B3jBE
Viruses and other pathogens are often studied as stand-alone entities, despite that, in nature, they mostly live in multispecies associations called biofilms—both externally and within the host.

https://t.co/FBfXhUrH5d


Microorganisms in biofilms are enclosed by an extracellular matrix that confers protection and improves survival. Previous studies have shown that viruses can secondarily colonize preexisting biofilms, and viral biofilms have also been described.


...we raise the perspective that CoVs can persistently infect bats due to their association with biofilm structures. This phenomenon potentially provides an optimal environment for nonpathogenic & well-adapted viruses to interact with the host, as well as for viral recombination.


Biofilms can also enhance virion viability in extracellular environments, such as on fomites and in aquatic sediments, allowing viral persistence and dissemination.