🤔 Python generators

What are they? How to use them?

#Python

🧵Let's find out 👇

1️⃣ Python generators are lazy iterators delivering the next value when their .next() is called.

They are created by using the yield keyword

next() can be called explicitly or implicitly inside for loop

They can be finite or infinite
2️⃣ yield - where a value is sent back to the caller, but the function doesn’t exit afterward as with the return statement

The state of function is remembered.

For example, the number is incremented and sent back from yield at the consecutive call next()
3️⃣ Generator stores only the current state of the function - it generates next element on next() call and forgets the previous one -> it saves memory

For example, we don't need to store 1mio elements in memory to do something with each element
4️⃣ When you call a generator function generator object is returned - it's not executed yet

It executes only when next() is called

For example, that's why Exception is raised only on the next() call
5️⃣ When the generator goes out of elements it raises StopIteration exception
6️⃣ You can also create a class that behaves like a generator - it needs implemented methods:

- __iter__ -> to enable iteration
- __next__ -> to enable next element access
7️⃣ You can also create a generator with one-liner expression similar to list comprehension
8️⃣ You can read more:

https://t.co/mXp7L8l2Ai

More from Machine learning

Really enjoyed digging into recent innovations in the football analytics industry.

>10 hours of interviews for this w/ a dozen or so of top firms in the game. Really grateful to everyone who gave up time & insights, even those that didnt make final cut 🙇‍♂️ https://t.co/9YOSrl8TdN


For avoidance of doubt, leading tracking analytics firms are now well beyond voronoi diagrams, using more granular measures to assess control and value of space.

This @JaviOnData & @LukeBornn paper from 2018 referenced in the piece demonstrates one method
https://t.co/Hx8XTUMpJ5


Bit of this that I nerded out on the most is "ghosting" — technique used by @counterattack9 & co @stats_insights, among others.

Deep learning models predict how specific players — operating w/in specific setups — will move & execute actions. A paper here: https://t.co/9qrKvJ70EN


So many use-cases:
1/ Quickly & automatically spot situations where opponent's defence is abnormally vulnerable. Drill those to death in training.
2/ Swap target player B in for current player A, and simulate. How does target player strengthen/weaken team? In specific situations?
Happy 2⃣0⃣2⃣1⃣ to all.🎇

For any Learning machines out there, here are a list of my fav online investing resources. Feel free to add yours.

Let's dive in.
⬇️⬇️⬇️

Investing Services

✔️ @themotleyfool - @TMFStockAdvisor & @TMFRuleBreakers services

✔️ @7investing

✔️ @investing_city
https://t.co/9aUK1Tclw4

✔️ @MorningstarInc Premium

✔️ @SeekingAlpha Marketplaces (Check your area of interest, Free trials, Quality, track record...)

General Finance/Investing

✔️ @morganhousel
https://t.co/f1joTRaG55

✔️ @dollarsanddata
https://t.co/Mj1owkzRc8

✔️ @awealthofcs
https://t.co/y81KHfh8cn

✔️ @iancassel
https://t.co/KEMTBHa8Qk

✔️ @InvestorAmnesia
https://t.co/zFL3H2dk6s

✔️

Tech focused

✔️ @stratechery
https://t.co/VsNwRStY9C

✔️ @bgurley
https://t.co/NKXGtaB6HQ

✔️ @CBinsights
https://t.co/H77hNp2X5R

✔️ @benedictevans
https://t.co/nyOlasCY1o

✔️

Tech Deep dives

✔️ @StackInvesting
https://t.co/WQ1yBYzT2m

✔️ @hhhypergrowth
https://t.co/kcLKITRLz1

✔️ @Beth_Kindig
https://t.co/CjhLRdP7Rh

✔️ @SeifelCapital
https://t.co/CXXG5PY0xX

✔️ @borrowed_ideas

You May Also Like