
BUZZ CHRONICLES > MACHINE LEARNING

Saved by @CodyyyGardner

See On Twitter

Twitter Thread by Jan Giacomelli

Jan Giacomelli
@jangiacomelli

■ Python generators

What are they? How to use them?

#Python

■Let's find out ■

1■■ Python generators are lazy iterators delivering the next value when their .next() is called.

They are created by using the yield keyword

next() can be called explicitly or implicitly inside for loop

They can be finite or infinite

https://buzzchronicles.com
https://buzzchronicles.com/b/machine+learning
https://buzzchronicles.com/CodyyyGardner
https://twitter.com/jangiacomelli/status/1346725313410023426
https://twitter.com/jangiacomelli
https://twitter.com/jangiacomelli
https://twitter.com/jangiacomelli


2■■ yield - where a value is sent back to the caller, but the function doesn’t exit afterward as with the return statement

The state of function is remembered.

For example, the number is incremented and sent back from yield at the consecutive call next()



3■■ Generator stores only the current state of the function - it generates next element on next() call and forgets the

previous one -> it saves memory

For example, we don't need to store 1mio elements in memory to do something with each element



4■■ When you call a generator function generator object is returned - it's not executed yet

It executes only when next() is called

For example, that's why Exception is raised only on the next() call



5■■ When the generator goes out of elements it raises StopIteration exception



6■■ You can also create a class that behaves like a generator - it needs implemented methods:

- __iter__ -> to enable iteration

- __next__ -> to enable next element access

7■■ You can also create a generator with one-liner expression similar to list comprehension



8■■ You can read more:

https://t.co/mXp7L8l2Ai

https://t.co/mXp7L8l2Ai

	🤔 Python generatorsWhat are they? How to use them?#Python🧵Let's find out 👇

