Machine learning terms you must know about as a beginner.

🧵👇

These terms won't mean anything unless you know what Machine learning is all about.

> Machine learning is the process of making a program which allows a computer to learn from data.

The data could be anything, images, audio or even text.

(2 / 11)
In machine learning we use something called a neural network, this is essentially an imitation of the human brain.

> Neural Networks are a digital imitation of the neurons you see in the human brain.

(3 / 11)
In these neural networks, data flows through them and each neuron (the circle) has a numerical value which will change.

> The value of a neuron gets changes to something which is close to what we want each time the data passes through the neural network.

(4 / 11)
Think of the neurons as dials on a lock, you have to tune every dial to open the lock.

It is almost impossible for a human to tune thousands of dials like these, but a computer certainly can.

(5 / 11)
Once the dials are well tuned, you have a well trained neural network!

Each dial's numeric value is dependent on a "weight" and a "bias". The weight determines how important the neuron is and the bias make it flexible.

(6 / 11)
So here's a recap of what we've looked at so far:

The neural net is the brain of the machine learning model, the dials you have to adjust to make that neural net work are the neurons.

(7 / 11)
Each time data passes through the neural network, we get to know how wrong it is. The measure of how wrong a neural network is called the "loss". The neural network uses this thing called an "optmizer" to reduce "loss" and tries to get less wrong after each iteration.

(8 / 11)
The number of times the data passes through the neural net is called the "epoch".

Let's summarize the entire thing👇

(9 / 11)
Neural Network: The brain of our machine learning model
Neuron : Each dial in a neural network
Weight : How important the neuron is
Bias : Flexibility of neuron

(10 / 11)
Epoch : Number of times the data passes through the neural network
Loss : How wrong the neural net is
Optimizer : Tries to reduce loss and make the neural net less wrong

Congrats! You know a fair bit about commonly used machine learning terms 😉
(11 / 11 🎉)

More from Pratham Prasoon

More from Machine learning

10 PYTHON 🐍 libraries for machine learning.

Retweets are appreciated.
[ Thread ]


1. NumPy (Numerical Python)

- The most powerful feature of NumPy is the n-dimensional array.

- It contains basic linear algebra functions, Fourier transforms, and tools for integration with other low-level languages.

Ref:
https://t.co/XY13ILXwSN


2. SciPy (Scientific Python)

- SciPy is built on NumPy.

- It is one of the most useful libraries for a variety of high-level science and engineering modules like discrete Fourier transform, Linear Algebra, Optimization, and Sparse matrices.

Ref: https://t.co/ALTFqM2VUo


3. Matplotlib

- Matplotlib is a comprehensive library for creating static, animated, and interactive visualizations in Python.

- You can also use Latex commands to add math to your plot.

- Matplotlib makes hard things possible.

Ref: https://t.co/zodOo2WzGx


4. Pandas

- Pandas is for structured data operations and manipulations.

- It is extensively used for data munging and preparation.

- Pandas were added relatively recently to Python and have been instrumental in boosting Python’s usage.

Ref: https://t.co/IFzikVHht4

You May Also Like