BC AI

A lot of Machine Learning (ML) I learned during my Ph.D. was from youtube. I didn't have a guide to do this effectively and thus here it is:

A complete guide to studying ML from youtube: 13 best and most recent ML courses available on YouTube. 👩‍🏫🧵⤵️

We will start with "Stanford CS229: Machine Learning" by Andrew Ng to start and learn the following ML concepts:

Linear & Logistic Regression,
Naive Bayes, SVMs, Kernels
Decision Trees, Introduction to Neural Networks
Debugging ML Models.
https://t.co/cMLzvsdIcT
A series of mini-lectures (~5 mins) covering various introductory topics in ML by Cassie Kozyrkov, covering:

Explainability in AI, Precession vs. Recall, Statistical Significance, Clustering and K-means, and finally, Ensemble models. https://t.co/LiujYMWFbT
Beyond an AI genius, Andrej Karpathy is a brilliant teacher. His creative teaching methods make this intro to Neural Networks (NN): Zero to Hero makes one of the best ways to get introduced to NN. https://t.co/WaYzmyHYKU
"MIT: Deep Learning for Art, Aesthetics, and Creativity " covers the application of deep learning for art, aesthetics, and creativity, including Neural Abstractions, Efficient GANs, and explorations in AI for Creativity. https://t.co/cANOWM1M2B
(Striking again) Andrew Ng's "Stanford CS230: Deep Learning (2018)" covers:

The foundations of deep learning, how to build different neural networks (CNNs, RNNs, LSTMs, etc...), how to lead machine learning projects and finally - AI and Healthcare. https://t.co/F1jBHejS5k
Applied Machine Learning teaches some of the most widely used techniques in ML, including:

Optimization and Calculus, Overfitting and Underfitting, Regularization, Monte Carlo Estimation, and Maximum Likelihood Learning. https://t.co/2znEMgrJvf
The first part of 'Practical Deep Learning for Coders' teaches you how to:

Build & deploy deep learning models for vision & NLP. Use PyTorch, plus popular libraries like fastai.
https://t.co/xTg00k7wrt
The 2-hour second part of 'Practical Deep Learning for Coders' takes a deep dive into a recent hot ML topic - Diffusion Models. https://t.co/82AHonifNK
ML with graphs teaches some of the latest graph techniques in machine learning:

PageRank, Matrix Factorizing, Node Embeddings, Graph Neural Networks, Knowledge Graphs, and finally, Deep Generative Models for Graphs.
https://t.co/hkgfoFoB9O
This course focuses on the probability and maths behind ML, covering:

Reasoning about uncertainty, Continuous Variables, Sampling, and Markov Chain Monte Carlo. https://t.co/Z76gVxeI3d
This 12-part Deep Unsupervised Learning aims to teach the latest and most widely used techniques in deep unsupervised learning:

Autoregressive Models, Latent Variable Models, & Self-supervised learning.
https://t.co/ywkSKC5r5w
'Foundation Models' is a recent course (June 2022) that aims to teach about foundation models like GPT-3, CLIP, Flamingo, and cross-language generalization. https://t.co/owLqaDXAwj
8 out of 10 ML breakthroughs you recently heard of are likely based on transformers. "Stanford CS25 - Transformers United" aims to introduce us to the following:

Transformers, its applications in Language (GPT-3), vision & universal compute
engines. https://t.co/nkTtSCG854
I will add here as I find more.

I tweet resources for big data research in healthcare. Follow me @Sanjusinha7 if that is of interest. See below for other such resources.
A list of almost all the big data resources available in cancer research. https://t.co/RjGMw2sxD4
28 common issues you will likely face while using ML for biomedicine and how to address them.
https://t.co/1kqZ03zmJd
11 computational resources to study immune system
https://t.co/drV8IQSDJY
12 resources to best analyze Spatial Transcriptomics. https://t.co/3WAb4z8HRL
10 educational resources for anyone interested in building skills to analyze big data in healthcare.
https://t.co/U1NbzVZMlN
20 open grand challenges to understand the relationship btw cancer and aging better.
https://t.co/IUqnLLlmuW
I am developing a drug discovery startup based on a recent computational technology I co-developed (See below).

I would love to chat if you would like to collaborate on this or a potential investor. DM/email [email protected]
https://t.co/ketww3SwSY

You May Also Like

क्या आप जानते हैं कि क्या है, पितृ पक्ष में कौवे को खाना देने के पीछे का वैज्ञानिक कारण!

श्राद्ध पक्ष में कौओं का बड़ा ही महत्व है। कहते है कौआ यम का प्रतीक है, यदि आपके हाथों दिया गया भोजन ग्रहण कर ले, तो ऐसा माना जाता है कि पितरों की कृपा आपके ऊपर है और वे आपसे ख़ुश है।


कुछ लोग कहते हैं की व्यक्ति मरकर सबसे पहले कौवे के रूप में जन्म लेता है और उसे खाना खिलाने से वह भोजन पितरों को मिलता है

शायद हम सबने अपने घर के किसी बड़े बुज़ुर्ग, किसी पंडित या ज्योतिषाचार्य से ये सुना होगा। वे अनगिनत किस्से सुनाएंगे, कहेंगे बड़े बुज़ुर्ग कह गए इसीलिए ऐसा करना

शायद ही हमें कोई इसके पीछे का वैज्ञानिक कारण बता सके।

हमारे ऋषि मुनि और पौराणिक काल में रहने वाले लोग मुर्ख नहीं थे! कभी सोचियेगा कौवों को पितृ पक्ष में खिलाई खीर हमारे पूर्वजों तक कैसे पहुंचेगी?

हमारे ऋषि मुनि विद्वान थे, वे जो बात करते या कहते थे उसके पीछे कोई न कोई वैज्ञानिक कारण छुपा होता था।

एक बहुत रोचक तथ्य है पितृ पक्ष, भादो( भाद्रपद) प्रकृति और काक के बीच।

एक बात जो कह सकते कि हम सब ने स्वतः उग आये पीपल या बरगद का पेड़/ पौधा किसी न किसी दीवार, पुरानी

इमारत, पर्वत या अट्टालिकाओं पर ज़रूर देखा होगा। देखा है न?

ज़रा सोचिये पीपल या बरगद की बीज कैसे पहुंचे होंगे वहाँ तक? इनके बीज इतने हल्के भी नहीं होते के हवा उन्हें उड़ाके ले जा सके।
A brief analysis and comparison of the CSS for Twitter's PWA vs Twitter's legacy desktop website. The difference is dramatic and I'll touch on some reasons why.

Legacy site *downloads* ~630 KB CSS per theme and writing direction.

6,769 rules
9,252 selectors
16.7k declarations
3,370 unique declarations
44 media queries
36 unique colors
50 unique background colors
46 unique font sizes
39 unique z-indices

https://t.co/qyl4Bt1i5x


PWA *incrementally generates* ~30 KB CSS that handles all themes and writing directions.

735 rules
740 selectors
757 declarations
730 unique declarations
0 media queries
11 unique colors
32 unique background colors
15 unique font sizes
7 unique z-indices

https://t.co/w7oNG5KUkJ


The legacy site's CSS is what happens when hundreds of people directly write CSS over many years. Specificity wars, redundancy, a house of cards that can't be fixed. The result is extremely inefficient and error-prone styling that punishes users and developers.

The PWA's CSS is generated on-demand by a JS framework that manages styles and outputs "atomic CSS". The framework can enforce strict constraints and perform optimisations, which is why the CSS is so much smaller and safer. Style conflicts and unbounded CSS growth are avoided.
One of the most successful stock trader with special focus on cash stocks and who has a very creative mind to look out for opportunities in dark times

Covering one of the most unique set ups: Extended moves & Reversal plays

Time for a 🧵 to learn the above from @iManasArora

What qualifies for an extended move?

30-40% move in just 5-6 days is one example of extended move

How Manas used this info to book


Post that the plight of the


Example 2: Booking profits when the stock is extended from 10WMA

10WMA =


Another hack to identify extended move in a stock:

Too many green days!

Read