
BUZZ CHRONICLES > MULTITHREADING

Saved by @IamKishor_P

See On Twitter

Twitter Thread by Vikas Rajput

Vikas Rajput
@vikasrajputin

Java: Beginner Guide to Multithreading

a thread...

Multithreading is a concept of applying multitasking in Java.

Java supports thread-based multitasking.

Java program can be divided into several threads and those threads can be executed in parallel to support multi-tasking.

Two ways to create a thread in Java:

1. By Implementing Runnable Interface

2. By extending the Thread class

Let's create a thread by implementing the "Runnable" interface:

Steps:

1. Implement Runnable Interface

2. Override the run() method, and put your code inside it.

3. Pass the instance of your class to the Thread class constructor.

4. Call the start() method to run your thread.

https://buzzchronicles.com
https://buzzchronicles.com/b/multithreading
https://buzzchronicles.com/IamKishor_P
https://twitter.com/vikasrajputin/status/1521684785566912514
https://twitter.com/vikasrajputin
https://twitter.com/vikasrajputin
https://twitter.com/vikasrajputin


Let's create a thread by extending the "Thread" class:

Steps:

1. Extend your class with Thread class

2. Override the run() method, and put your code inside it.

3. Instantiate your class.

4. Call the start() method to run your thread.



Out of the above approaches, it is always advisable to use the first approach(By implementing a Runnable Interface) to

create the threads in Java.

Because it's an Interface, you can also extend other classes in the future and also implement other interfaces.

Lifecycle of thread:

It has 5 different phases in its lifecycle:

1. New

2. Runnable

3. Running

4. Waiting

5. Dead



Few Important Methods of Thread Class:

run() - Actual task of the thread is defined here.

start() - Starts the thread

join() - Wait for thread to die.

setName() - Give name to our thread.

getName() - Returns the thread name.

setPriority() - Sets the priority to thread.

getPriority() - Returns the priority.

getState() - Returns the state of thread.

isAlive() - checks if thread is alive or not

and a few more...

Conclusion:

We can use Multithreading in order to boost the performance of our program.

If our program has independent units, we can run those independent code blocks into a separate thread.

They can run parallel and process faster than normal.


	Java: Beginner Guide to Multithreadinga thread...

