BUZZ CHRONICLES > MATHS Saved by @SteveeRogerr See On Twitter

Twitter Thread by P. Geerkens +

One might say that physicists study the symmetry of nature, while mathematicians study the nature of symmetry.

1/

<u>@GWOMaths</u> Observing symmetry in nature, such as noting the similarity between the symmetries of a snowflake and a hexagon, is readily comprehensible. What does it mean then to study "the nature of symmetry"?

2/

<u>@GWOMaths</u> Mathematicians define a "group", G, as a set of elements $\{a,b,c,...\}$ with a binary operation \blacksquare and a distinguished element e (the identity of G) satisfying these specific properties:

3/

@GWOMaths For all a, b, c in G
1) Closure: alb is in G.
2) Associativity: (alb) c = al(blc)
3) Identity: ella = alle = a.
4) Inverse: There exists an element a* such that a*la = alla* = e.

4/

<u>@GWOMaths</u> Just as functions on the integers, rationals, or reals are defined as mappings, mathematicians define a *group morphism* μ as a mapping from one group to another that preserves the group structure:

5/

<u>@GWOMaths</u> For groups G = [{a,b,c, ...}, \blacksquare , e] and H = [{ α , β , γ , ...}, \blacksquare , ϵ] then μ : G \blacksquare H is a "group morphism" if for all elements of G: $\mu(a\blacksquare b) = \mu(a)\blacksquare \mu(b)$. Note that for all a: $\mu(a)\blacksquare \epsilon = \mu(a) = \mu(a\blacksquare e) = \mu(a)\blacksquare \mu(e)$ and hence $\mu(e)=\epsilon$; Similarly it can be shown that $\mu(a^*) = \mu(a)^*.$

<u>@GWOMaths</u> Thus the definition of such a *group morphism* preserves the group structure. When such a *morphism* is both *onto* (ie every element of H is mapped to by one or more elements of G) and *one-to-one* (only one element of G maps to each element in H) it is termed an *isomorphism*.

<u>@GWOMaths</u> For mathematical purposes, when there exists an *isomorphism* between two groups $G = [\{a, b, c, ...\}, \blacksquare, e]$ and $H = [\{\alpha, \beta, \gamma, ...\}, \blacksquare, \epsilon]$ then G and H are termed *isomorphic*, or *the same up to isomorphism*.

<u>@GWOMaths</u> Now all the finite groups can be classified in terms of various internal structures, first collecting those which are *the same up to isomorphism* and then collecting families with similar internal structure.

<u>@GWOMaths</u> When all the families of groups - Cyclic, Alternating, and assorted Lie Group Types - have been defined, there are remaining 26 groups that don't fit anywhere: the *sporadic groups*.

@GWOMaths Of these 26 *sporadic groups*, two stand out from the others in terms of their size:

the *Baby Monster*, *B*, of size
 2■¹ · 3¹³ · 5■ · 7² · 11 · 13 · 17 · 19 · 23 · 31 · 47; and

<u>@GWOMaths</u> - the *(Fischer–Griess) Monster), *M*, of size 2■■ · 3²■ · 5■ · 7■ · 11² · 13³ · 17 · 19 · 23 · 29 · 31 · 41 · 47 · 59 · 71.

Counting up the number of distinct primes in that last number gives us 15.

@GWOMaths Therefore today's answer is that:

The number of distinct prime factors in the size, n, of the *Monster Group* M is

15.

@GWOMaths @threadreaderapp unroll