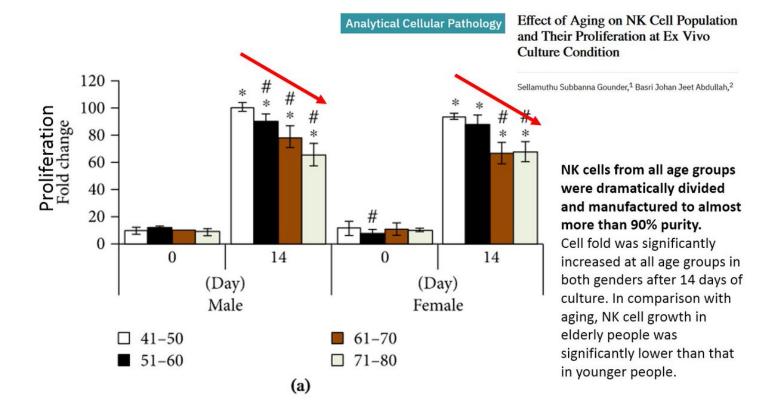
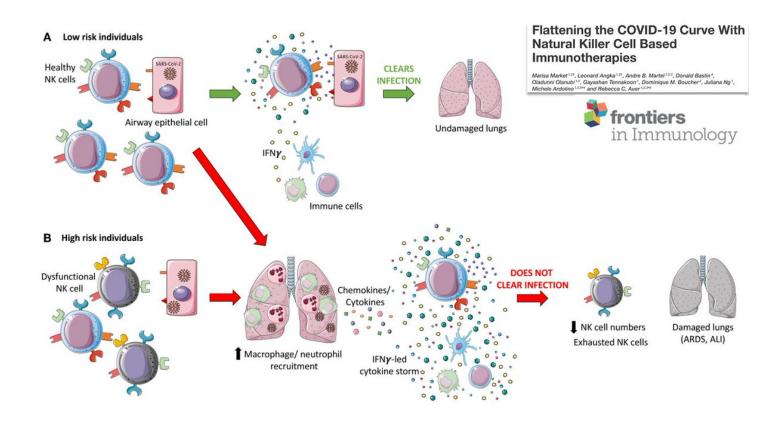

Twitter Thread by <u>Dr John B.</u>

Dr John B.
@DrJohnB2

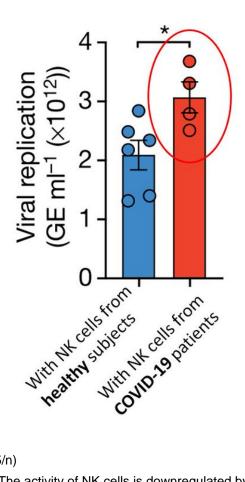

(1/n) The important role of natural killer (NK) cells in COVID-19. A summary of key insights:

- NK cells are cytotoxic lymphocytes & part of the innate immune system
- They play an important role in virus infection control & immunomodulation



(2/n)

- The NK cell proliferation ability declines with age: older people have a decreased ability to produce NC cells rapidly: https://t.co/VZ9PSW5OBU



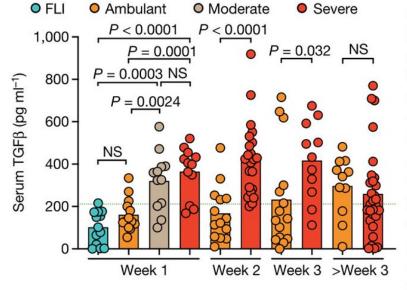
(3/n)
- As early as June 2020, it was hypothesised that NCCs could be key in explaining severe COVID-19 courses: https://t.co/yJPXeXcku0

(4/n)

- Indeed, it was later found that NK cells from COVID-19 patients do not function well:https://t.co/aEK9KpaA45

NK cells isolated from patients admitted to hospital with COVID-19 were significantly less effective in reducing the viral load compared with NK cells from healthy donors

nature


Untimely TGF \(\beta\) responses in COVID-19 limit antiviral functions of NK cells

https://doi.org/10.1038/s41586-021-04142-6 Received: 30 March 2021 Accepted: 14 October 2021 Published online: 25 October 2021 Check for updates

Mario Witkowski^{1,2,3,31,33}, Caroline Tizian^{1,2,31}, Marta Ferreira-Gomes^{4,31}, Daniela Niemeyer^{5,6}, Terry C. Jones^{5,6,7}, Frederik Heinrich⁴, Stefan Frischbutter ^{8,9}, Stefan Angerr Thordis Hohnstein¹², Irene Mattiola¹², Philipp Nawrath¹³, Sophie McEwen¹³, Silvia Zocche¹¹ Edoardo Viviano¹², Gitta Anne Heinz⁴, Marcus Maurer^{8,9}, Uwe Kölsch¹³, Robert Lorenz Chua¹ Tom Aschman¹⁹, Christian Meisel^{13,9}, Josefine Radke¹³, Birgit Sawitzki¹⁹, Jobst Roehmel¹⁷, Kristina Allers¹⁸, Verena Moos¹⁸, Thomas Schneider¹⁸, Leif Hanitsch¹⁶, Marcus A. Mall^{13,9}, Christian Conrad¹⁴, Helena Radbruch¹⁸, Claudia U. Duerr²⁰, Joseph A. Trapani²¹, Emanuela Marcenaro²², Tilmann Kallinich^{17,23}, Victor M. Corman^{5,6}, Florian Kurth^{24,25}, Leif Erik Sander²⁴, Christian Drosten^{5,6}, Sascha Treskatsch¹⁰, Pawel Durek⁴, Andrey Kruglov^{26,27,28}, Andreas Radbruch²⁹, Mir-Farzin Mashreghi^{4,30,32} & Andreas Diefenbach^{1,2,3,32} ≅

(5/n)

- The activity of NK cells is downregulated by the cytokine transforming growth factor-β (TGFβ)
- Blood serum of patients with severe COVID-19 inhibits NK cell function in a TGFβ-dependent manner: https://t.co/aEK9KpaA45

Serum of patients with severe COVID-19 inhibits NK cell function in a TGFβdependent manner.

Serum levels of active TGFB. Independent measurements (mean) from 13 patients with FLI (n = 13) and 66 patients with COVID-19 (30 severe, n = 74; 7 moderate, n = 12; 39 ambulant, n = 53) at indicated time points after symptom onset (group >3 weeks contains samples from weeks 4 and 5). The dashed line indicates the median TGFβ serum level of 34 healthy donors. Patients receiving corticosteroids were excluded.

Untimely TGFB responses in COVID-19 limit antiviral functions of NK cells

Mario Witkowski ☑, Caroline Tizian, ... Andreas Diefenbach ☑ + Show authors

Nature 600, 295-301 (2021)

(6/n)

- An untimely early production of TGFβ and associated NK cell dysfunction is a hallmark of severe COVID-19

- The inhibition of untimely TGFβ production & the promotion of NK cell function may positively affect SARS-CoV-2 control on multiple levels: https://t.co/zjeCnASWhx

Int. J. Biol. Sci. 2020, Vol. 16

1954

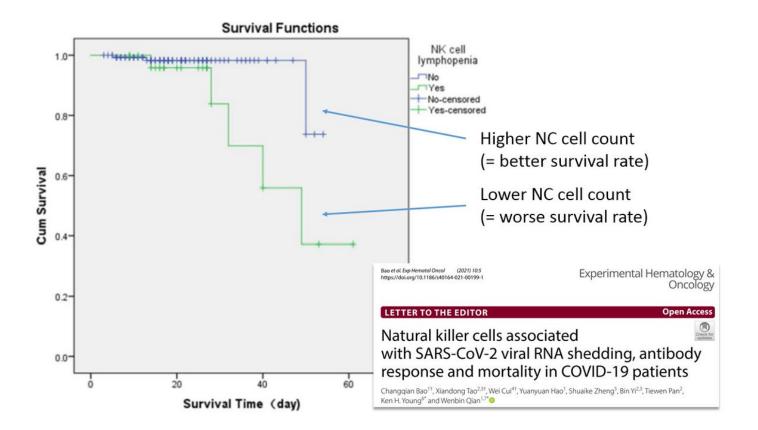
International Journal of Biological Sciences

2020; 16(11): 1954-1955. doi: 10.7150/ijbs.46891

Editorial

A potential treatment of COVID-19 with TGF- β blockade

WanJun Chen[™]


Mucosal Immunology Section, NIDCR, National Institutes of Health, Bethesda, MD 202892, USA

Corresponding author: WanJun Chen, MD, Chief, Mucosal Immunology Section, NIDCR, National Institutes of Health, Bethesda, MD 202892, wchen@mail.nih.gov

«Based on the clinical and laboratory features and lung pathological manifestations of COVID-19 patients combined with published pathological and immunological features present in the lungs of previous SARS patients, I hereby propose a potential immunotherapy for the severe COVID-19 through blockade of transforming growth factor-beta (TGF- β).»

(7/n)

- A lower NK cell count in COVID-19 patients has been shown to be correlated with a lower survival rate:https://t.co/EUQkL76GhW

(8/n)

- NK cell dysregulation as a key factor in COVID-19 was also highlighted 1.5 years ago: https://t.co/Dg0KmYT2iS
- "Restoration of NK cell effector functions has the potential to correct the delicate immune balance required to effectively overcome SARS-CoV-2 infection."

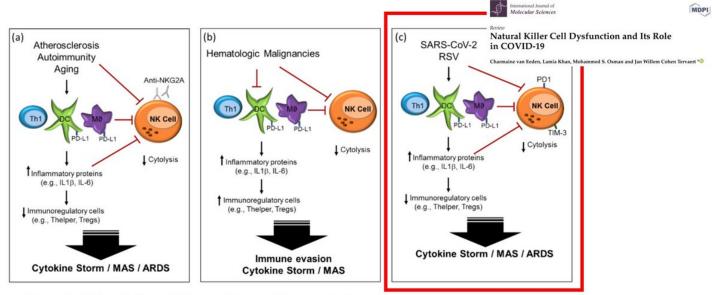


Figure 2. Natural killer cell dysregulation in (a) systemic diseases; (b) hematologic malignancies; (c) SARS-CoV-2. (a) Immune imbalance in atherosclerosis, autoimmunity and ageing leads to excess inflammation; (b) Hematologic malignancies trigger both excess inflammation and immune invasion; (c) SARS-CoV-2 and respiratory syncytial virus (RSV) trigger immune imbalances which result in a disproportionate inflammatory response.

(9/n)

- Vitamin D (our old friend!) also plays a role for the NK cells. Vitamin D deficiency correlates with a reduced number of NK cells in COVID-19 patients: https://t.co/YNrvKIrlgj

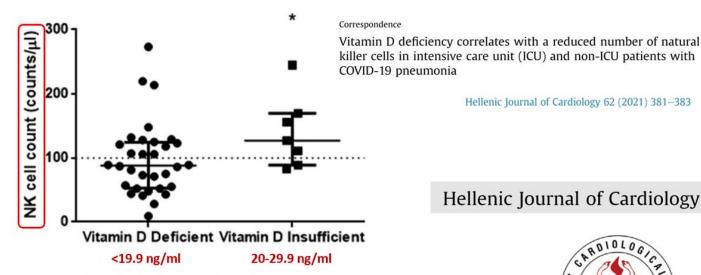
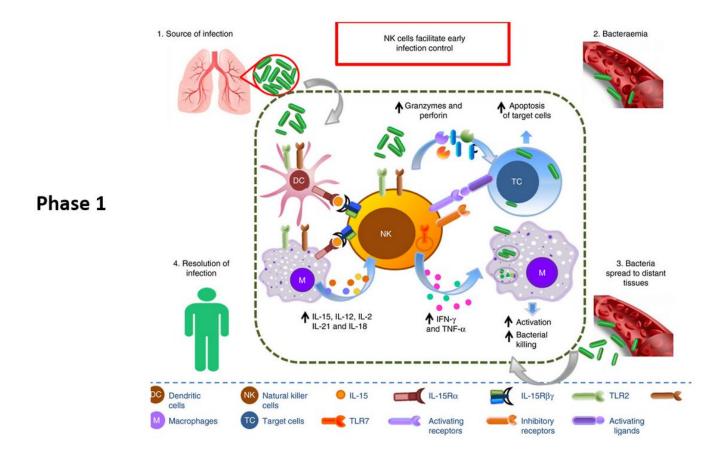
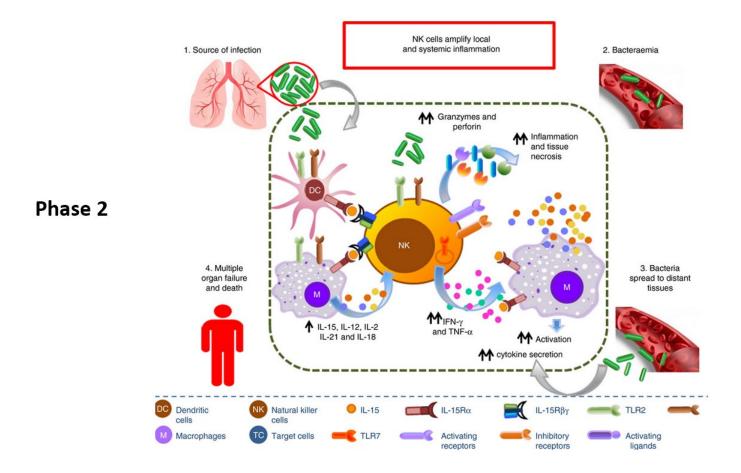


Figure 1. Vitamin D deficiency and NK cell count. Vitamin D levels were measured in 39 COVID-19 patients on hospital admission (within 48 h). We subsequently divided our cohort into two groups based on their vitamin D levels; vitamin D deficient (\leq 19.9 ng/ml, N = 32) and vitamin D insufficient (20-29.9 ng/ml, N = 7). Nonparametric Mann-Whitney revealed a statistically significant relationship between the count of NK cells in vitamin D deficient and insufficient patients. Data are represented as scatter plots. Line in the middle, median value; lower and upper lines, 25th to 75th centiles; horizontal line, threshold for NK lymphopenia. *p <0.05. NK= Natural killer.

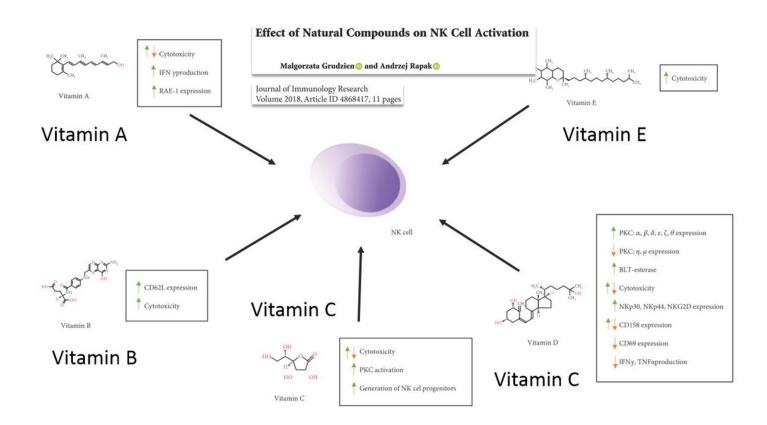

Hellenic Journal of Cardiology

Hellenic Journal of Cardiology 62 (2021) 381-383



(10/n)

- While early NK cell stimulation & IFN-γ production is bene cial to combat infections, excessive & prolonged stimulation of NK cells leads to reduced NK cell numbers & an exhausted phenotype associated with increased systemic in mammation: https://t.co/vPpfKbntne



(11/n) Phase 1 ■ Phase 2

(12/n)

- The vitamins A, B, C, D and E influence NK cell activity: https://t.co/37ucftVsXp

(13/n) Also phytochemicals haven an effect on NK cell activity: https://t.co/37ucftVsXp

TABLE 1: The effect of natural compounds on NK cells.

Substance name	Effect on NK cells	References
Genistein	Increased/decreased cytotoxicity	[56-60]
Curcumin	Increased NO production, increased cytotoxicity	[61-67]
Ginseng extract	Increased cytotoxicity and granzyme B expression	[68-71]
Garlic extract	Increased cytotoxicity and cell number	[72-74]
Resveratrol	Increased cytotoxicity, JNK, ERK1/2 MAP kinase activity, perforin and NKG2D expression, and IFN- γ production	[75–78]
Ashwagandha extract	Increased cell number and CD69 expression	[79-83]
Ingenol mebutate	PKC activation, impaired cytotoxicity, and degranulation	[84-87]
Kumquat pericarp extract	Increased cytotoxicity and IFN-γ production	[88-90]
Prostratin	PKC activation, increased NKG2D expression and antiviral activity, impaired degranulation, and cytokine production	[87, 91]
Lectins	Increased cytotoxicity	[92]
Polysaccharides	Increased cytotoxicity and proliferation	[93-95]

Effect of Natural Compounds on NK Cell Activation Malgorzata Grudzien and Andrzej Rapak Journal of Immunology Research Volume 2018, Article ID 4868417, 11 pages

(14/n) To summarize:

- NK cells play an important role in COVID-19 disease severity and outcomes
- Age, vitamin deficiencies, etc. negatively affect the functioning of NK cells
- Therapeutic approaches for COVID-19 should include support of NK cell function