Twitter Thread by Santiago

Santiago
@svpino

You gotta think about this one carefully!

Imagine you go to the doctor and get tested for a rare disease (only 1 in 10,000 people get it.)

The test is 99\% effective in detecting both sick and healthy people.

Your test comes back positive.

Are you really sick? Explain below

The most complete answer from every reply so far is from Dr. Lena. Thanks for taking the time and going through it!
https://t.co/jGt006VIh5

Really doesnlu2019t fit well in a tweet. pic.twitter.com/xN0pAyniFS
— Dr. Lena Sugar \U0001f3f3\ufeOflu200d\U0001f308\U0001f1ea\U0001f1fa\U0001f1ef\U0001f1f5 (@_jvs) February 18,2021

You can get the answer using Bayes' theorem, but let's try to come up with it in a different —maybe more intuitive- way.

Here is what we know:

- Out of 10,000 people, 1 is sick
- Out of 100 sick people, 99 test positive
- Out of 100 healthy people, 99 test negative

Assuming 1 million people take the test (including you):

- 100 of them are sick
- 999,900 of them are healthy

Let's now test both groups, starting with the 100 people sick:

■ 99 of them will be diagnosed (correctly) as sick (99\%)

- 1 of them is going to be diagnosed (incorrectly) as healthy (1\%)

Let's now test the group of 999,900 healthy individuals:

- 989,901 of them will be diagnosed (correctly) as healthy (99\%)
- 9,999 of them will be diagnosed (incorrectly) as sick (1\%)

Since your test came back positive, it means that you belong to either one of the groups that had a positive result:

1. 99 people that are truly sick, or
2. 9,999 people that are actually healthy (but were diagnosed as sick.)

Basically, out of 10,098 , only 99 are truly sick.

That'll give you a 0.98% chance of being sick!

So no, most likely, you are fine!

Here is something important: this is true as long as our only priors are that 1 in 10,000 people have the disease.

For example, if you were showing symptoms, then your chance of being sick after receiving a positive test will be higher.

