BUZZ CHRONICLES > GPT CHEAT LL
Saved by @Smatpix
See On Twitter

Twitter Thread by Santiago

Santiago
@svpino

11 ways ChatGPT saves me hours of work every day, and why you'll never
outcompete those who use Al effectively.

A list for those who write code:

1 of 16

1. Explaining code
Take some code you want to understand and ask ChatGPT to explain it.
I've found explanations are very detailed. This is much quicker than trying to figure out convoluted code.

2 of 16

https://buzzchronicles.com
https://buzzchronicles.com/b/gpt+cheat+ll
https://buzzchronicles.com/Smatpix
https://twitter.com/svpino/status/1611357154514186241
https://twitter.com/svpino
https://twitter.com/svpino
https://twitter.com/svpino

SV What is this function doing?

def get_issue(issue, owner, repo):
url = f"https://api.github.com/repos/{owner}/{repo}/issues/{issue}"
response = requests.request(
"GET", url, headers=headers, auth=(GITHUB_USERNAME, GITHUB_TOKEN)
)

response_json = json.loads(response.text)

title = response_json["title"]
body = response_json["body"]

return {
"title": title,
"body": body,

This function appears to be making a GET request to the GitHub API to retrieve

information about a specific issue in a repository. It is using the “requests™ module to

send the request and the " json™ module to parse the response. The “GITHUB_USERNAME"

and “GITHUB_TOKEN" variables are being used to authenticate the request.

The function takes three arguments: “issue”, “owner", and “repo’. These are used to
construct the URL of the API endpoint for the specific issue. The function then sends a
GET request to this endpoint using the "requests.request™ function, passing in the

“headers™ and “auth™ parameters.

The function parses the response from the APl and extracts the “title" and “body" fields

from the JSON object. It returns a dictionary containing these two fields.

2. Improve existing code
Ask ChatGPT to improve existing code by describing what you want to accomplish.
It will give you instructions about how to do it, including the modified code.

3 of 16

| want to raise an exception if the authentication is incorrect

To raise an exception if the authentication is incorrect, you can check the ~status_code”

attribute of the “response™ object. If the “status_code” is "4@01 Unauthorized’, it means

that the authentication was incorrect.
Here is an example of how you can modify the function to raise an exception in this case:
|:| Copy code
(issue, owner, repo):
url =

response = requests.request(
, url, headers=headers, auth=(GITHUB_USERNAME, GITHUB_TOKEN)

response.status_code ==
: Exception(
response_json = json.loads(response.text)

title = response_json[

body = response_json[

This will raise an exception with the message "Authentication failed" if the " status_code"

is *401°. You can customize the exception message and type as needed.

3. Rewriting code using the correct style

This is great when refactoring code written by non-native Python developers who used a different naming convention.

Notice how ChatGPT not only gives you the updated code; it also explains the reason for the changes.

4 0of 16

SV Rewrite this function following Python's naming conventions:

def GetlSSueFromGitHub(lssue, Owner, Repo):
Url = f"https://api.github.com/repos/{owner}/{repo}/issues/{issue}"
response = requests.request(
"GET", Url, headers=headers, auth=(GITHUB_USERNAME, GITHUB_TOKEN)

ResponseJson = json.loads(response.text)
return {

"title": ResponseJson["title"],

"body": ResponseJson["body"],

@ Here is the function rewritten to follow Python's naming conventions:

7] Copy code

(issue, owner, repo):
url =
response = requests.request(
, url, headers=headers, auth=(GITHUB_USERNAME, GITHUB_TOKEN)

response_json = json.loads(response.text)

{
: response_json[1,
: response_json[1,

In Python, it is recommended to use lowercase letters and underscores for function and
variable names. It is also recommended to use meaningful names that accurately describe
the purpose of the function or variable. In this case, the function has been renamed to
“get_issue_from_github’, and the variables have been renamed to *issue’, “owner’,
and “repo”. The constants “GITHUB_USERNAME" and *GITHUB_TOKEN" have not been

changed, as they are already in the recommended style.

4. Rewriting code using idiomatic constructs

Very helpful when reviewing and refactoring code written by non-native Python developers.

ChatGPT knows the "Pythonic" way, and it will give you suggestions to improve your code and make it much more readable.

5o0f 16

Rewrite this function using idiomatic Python:

s

def if_correct_city(city):
if city == 'Madrid' or city == 'Miami' or city == 'Paris':
return True

Here is the function rewritten using idiomatic Python:

2] Copy code

In this version of the function, the “in" operator is used to check if “city" is in a list of

acceptable values. This is a more concise and readable way to express the same logic as

the original function.

Alternatively, you can also use a set to store the acceptable values, as lookup in a set is

faster than in a list:
) Copy code

(city):
city {

5. Simplifying code
This is one of my favorite tricks: Ask ChatGPT to simplify complex code.
The result will be a much more compact version of the original code.

Notice the explanation and how it tells us this is simpler but not the most efficient.

6 of 16

sV

Simplify the following code as much as possible:

def partition(array, low, high):
pivot = array[high]
i=low-1
for j in range(low, high):
if array[j] <= pivot:

i=zi+1

(arrayl[i], array[j]) = (array[j], array[i])
(array[i + 1], array[high]) = (array[high], array[i + 1])
returni+ 1

def quickSort(array, low, high):
if low < high:
pi = partition(array, low, high)
quickSort(array, low, pi - 1)
quickSort(array, pi + 1, high)

data=[1,7 4, 1,10, 9, -2]
print(data)

quickSort(data, 0, len(data) - 1)
print{data)

T

Here is the code simplified as much as possible:

D Copy code

(array):
not array:
0
pivot = array[@]
less = [x r X in array[1:] X <= pivot]
greater = [x % in array[1:] X > pivot]
quick_sort(less) + [pivot] + quick_sort(greater)

duta:[l 1]] ¥]]
print{quick_sort{data))

In this version of the code, the “partition” function has been removed and the quick sort

logic has been simplified to a single recursive function. The pivot element is chosen as the

first element in the array, and the list is partitioned into two sublists using list

comprehensions. The function then recursively calls itself on the two sublists and returns

the concatenation of the sorted sublists with the pivot element in the middle.

Note that this implementation is not the most efficient way to implement quick sort, but it

is the simplest.

6. Writing test cases
This has become one of my favorite ChatGPT abilities: Ask it to help you test a function, and it will write test cases for you.
This example focuses on the quick_sort function from the previous example.

7 of 16

SV Write a few test cases to ensure the new quick_sort function is correct

@ Here are a few test cases that you can use to ensure that the “quick_sort" function is

correct:

EI Copy code

(=0

(011 == [1]

B, 2, 1D = [1,
([1o,

L1,

o,

(C

test_quick_sort()

7. Exploring alternatives

ChatGPT told me its Quick Sort implementation wasn't the most efficient, so | asked for an alternative implementation.

This is great when you want to explore different ways to accomplish the same thing.

I've learned a ton from this!

8 of 16

What is a more efficient way to implement the quick_sort function in Python?

One way to make the “quick_sort™ function more efficient is to use the *random™ module
to choose a random pivot element instead of always choosing the first element. This helps

to avoid worst-case performance when the list is already sorted or nearly sorted.

Here is an example of how you can modify the “quick_sort™ function to choose a random

pivot element:

D Copy code

import random

def Carray):
not array:
O
pivot_index = random.randint(?, len(array) - 1)
pivot = array[pivot_index]
less = [x i, x in enumerate(array) i != pivot_index and x <=
pivot]
greater = [x i, x in enumerate(array) i != pivot_index and x >
pivot]
quick_sort(less) + [pivot] + quick_sort(greater)

In this version of the function, the pivot element is chosen randomly using the
“random. randint” function. The list is then partitioned into two sublists using list
comprehensions, with the pivot element excluded from the sublists. The function then
recursively calls itself on the two sublists and returns the concatenation of the sorted

sublists with the pivot element in the middle.

This approach helps to ensure that the pivot element is not always the first or last element

in the list, which can lead to slower performance in certain cases. However, it is important

to note that this implementation is still not the most efficient way to implement quick sort
in Python, as it has a time complexity of O(n”2) in the worst case. There are more efficient
algorithms available, such as the introsort algorithm, which has a time complexity of
O(n*log(n)) in the worst case.

8. Translating code

Anytime you want to port some code from one language to another, ask ChatGPT to help you.

9 of 16

sv Translate this function from JavaScript to Python:

let find = function (arr, x, start, end) {

if (start > end) return false;
let mid=Math.floor((start + end)/2);
if (arr[mid]===x) return true;
if(arr[mid] > x)

return find(arr, x, start, mid-1);
else

return find(arr, x, mid+1, end);

@ Here is the function translated from JavaScript to Python:
7] copy code

def find(Carr, x,
if start >

mid = ((start + D/
if arr[mid] == x:

if arr[mid] > x:
findCarr, x, start, mid - 1)

findCarr, x, mid + 1,

In this version of the function, the “Math. floor™ function has been replaced with the
“int" function, and the “==" operator has been replaced with the *=" operator. Other

than these changes, the function is mostly similar to the original JavaScript version.

9. Writing documentation
This is another one of my favorite tricks.

Ask ChatGPT to write the documentation for a piece of code, and it usually does a great job.

It even includes usage examples as part of the documentation!

10 of 16

Write documentation for this function

Here is some documentation for the *find® function:

E] Copy code

Carr, x, start, end):

start > end:

mid = int((start + end) /)
arr[mid] ==

arr[mid] > x:
find(arr, x, start, mid - 1)

find(arr, x, mid + 1, end)

This documentation provides a brief description of the function, a list of parameters with
their types and descriptions, a return value with its type and description, and an example
of how to use the function. It also provides a more detailed description of the function's
behavior and how it performs the search. This information should be sufficient for users of

the function to understand how to use it and what it does.

10. Tracking down bugs

If you are having trouble finding a bug in your code, ask ChatGPT for help.

It took ChatGPT seconds to find the bug in the attached example. | don't know about you, but it would have taken me much
longer than that.

11 of 16

sV Find the bug in the following function that finds whether a supplied value x exists in an
array.

def find(arr, x, start, end):
if start > end:
return False
mid = int((start + end) [2)
if arr[mid] == x:
return True
if arr[mid] > x:
return find(arr, x, start, mid)
else:
return find(arr, x, mid + 1, end)

The bug in the *“find™ function is that it does not update the end index of the range when

calling itself recursively with the “arr®, x*, “start”, and “mid™ arguments. This can

cause the function to enter an infinite loop if the value of *mid"” is not updated.

To fix this bug, you can update the end index of the range to “mid - 1" when calling the

LR S T Y

function recursively with the “arr”, "x°, “start”, and “mid" arguments, like this:

[C] copy code

def find(Carr, x,
if >

mid = (C +) /
if arr[mid] == x:

if arr[mid] > x:
findCarr, x, , mid - 1)

findCarr, x, mid + 1,

This fixes the bug by correctly updating the end index of the range when the function is

called recursively. The function will now terminate correctly and return the correct result.

11. Scaffolding

Probably the way | use it the most is to kick off the structure of anything new | want to write. GitHub Copilot does a great job
at this as well.

An example where this is very useful is when interacting with a RESTful API.

12 of 16

Write a function that reads a text file from disk and uploads it to an S3 bucket gives as a
parameter. The filename should also be a parameter to the function.

Here is a function that reads a text file from disk and uploads it to an S3 bucket:

[C) Copy code

(filename, bucket_name):

open(filename, |
file_content = f.read()

s3 = boto3.client()
s3.put_object(Bucket=bucket_name, Key=filename, Body=file_content)

This function uses the “boto3" library to connect to S3 and upload the file. It reads the

contents of the file using the “open" function and the *read™ method, and then uses the

“put_object® method of the “s3" client to upload the file to the specified bucket. The
“filename™ and “bucket_name™ parameters are used to specify the name of the file and

the name of the bucket, respectively.

Something to keep in mind:
I have 2+ decades of programming experience. | like to think | know what I'm doing.
| don't trust people's code (especially mine,) and | surely don't trust ChatGPT's output.

13 of 16

This is not about letting ChatGPT do my work. This is about using it to 10x my output.

ChatGPT is flawed. | find it makes mistakes when dealing with code, but that's why I'm here: to supervise it.

Together we form a more perfect Union. (Sorry, couldn't help it)

14 of 16

Developers who shit on this are missing the point.

The story is not about ChatGPT taking programmers' jobs. It's not about a missing import here or a subtle mistake there.

The story is how, overnight, Al gives programmers a 100x boost.

Ignore this at your own peril.

15 of 16

Next time, I'll show you how to build an end-to-end deep learning model using ChatGPT.

I'll only ask questions.

It'll blow your mind.

Follow me @svpino to ensure you don't miss it.

16 of 16

https://twitter.com/svpino

	11 ways ChatGPT saves me hours of work every day, and why you'll never outcompete those who use AI effectively.A list for those who write code:1 of 16

