BUZZ CHRONICLES > FINANCE
Saved by @curiousat3am
See On Twitter

Twitter Thread by Indian Quant mm

Indian Quant mm y

A @indian_quant

Nano Course On Python For Trading

In this post, | will attempt to teach you how to write an algorithm in python to
automatically find support and resistance. We shall use the data we downloaded in
module 2.

To visualize price action, | have used the daily candlestick chart. To quantify the meaning of support and resistance, | have
taken below definitions:
In a series of 5 continuous candles, if the first three candles make increasing high and then 2 decreasing highs, then the

high of the third candle is considered resistance. Similarly, if the first 3 candles make lower lows and the next 2 make high
lows then the low of the third candle is support.


https://buzzchronicles.com
https://buzzchronicles.com/b/finance
https://buzzchronicles.com/curiousat3am
https://twitter.com/indian_quant/status/1492100561528778754
https://twitter.com/indian_quant
https://twitter.com/indian_quant
https://twitter.com/indian_quant

High of 3rd candle is Resistance

The above explanation is for the sake of quantifying support and resistance at a very basic level. These are called fractals.
Now let's get started with the code.

mpl_finance is the new module here. We will use its candlestick_ohlc function.

import pandas as pd

import numpy as np

import yfinance

from mpl finance import candlestick ohlc
import matplotlib.dates as mpl dates
import matplotlib.pyplot as plt

plt.rcParams[ ' figure.figsize'] = [12, 7]
plt.rc( " font', size=14)
Now, if you remember, you downloaded data for nifty 50 stocks in module 2. We shall use that data. Let's work on ITC data

this time.
We will use data from 1 Jan 2021 to 30 June 2021.



df
df
df

start_date = "2821-081-01"

end_date =

"2821-86-31"

df = df[(df[ 'Date’'] >=

df

Date

Open

High

start_date) & (df['Date’'] <= end_date)]

Low

Close

1730
1731
1732
1733
1734

1847
1848
1849
1850
1851

2021-01-01
2021-01-04
2021-01-05
2021-01-06
2021-01-07

2021-06-24
2021-06-25
2021-06-28
2021-06-29
2021-06-30

209.90
214.00
212.45
211.45
206.10

204.45
204.00
205.90
203.60
204.30

214.20
216.00
213.25
211.50
207.60

204.65
205.60
205.90
205.30
204.40

209.30
212.10
210.60
204.50
202.10

202.55
203.75
203.35
203.15
202.55

213.85
213.40
211.45
205.40
202.80

203.25
205.05
203.60
203.30
202.70

pd.read_csv(r"C:\Users\pvarshney\Downloads\BlackField Research\Content\Nifty 58 Data\ITC.csv")
df.drop(['Unnamed: 8'], axis

Let's plot the candlestick chart for this data frame. We are going to use the candlestick_ohlc function from the mpl_finance
module. | have defined a function plot_chart() which you can see in the google colab link in the last thread

240 1
235

230

225 h

220
Mo
[ | I I |

200 1

215 1
210 |

205

,10'1:\“ ,.Lg'lx 'ld}} Q'l:\“

o © <
oV ¢ ¥

16

We will iterate over this dataframe and see if the low of the current candle is a support or high is a resistance. For that, we
have created an array named levels.

Again remember the definition of fractals, we shall leave the first two candles and the last 2 candles as we



need two candles to the right of a candle in order to consider it a fractal. Similarly, we will leave the last two candles. We will
iterate over the data frame from index 2 till it is 2 less than its size. We also need to define two functions "isSupport" and

"isResistance"
+

levels = []
for i in range(2,df.shape[@]-2):
print(i)
if isSupport(df,i):
levels.append((i,df[ "Low " J[i]))
elif isResistance(df,i):
levels.append((i,df[ "High"'][i]))

L P e

LA =

=]

determines and returns true/false if a candle low is a support or its high is resistance. In this image below 1-2-3-4-5is a
fractal as explained above, low of the candle on 10 Jan is support and high on 20 Jan is resistance. Repeating this process

for the entire data frame.

220
P
215 | I

210

205 I
200 . SI.". . . . |

Q I 2% A% A% 2% AS %S
ec'?,“'l o 20% \3“101 \3“101 o ol \30101 \3010"'
v 2 0 % 0 5 \)
0 Bt “ T 1 D

To plot the levels we add it in our plot function (named it plot_all() ) and execute it.



for level in levels:
plt.hlines(level[1],xmin=df[ 'Date’ ]J[levell[@]],\
xmax=max(df[ 'Date’]),colors="blue’)
fig.show()

= s}
[0, [ S I N

(=]

But, alas it looks so ugly currently, | don't wanna look at it. There is a way that we can reduce the number of levels marked.
What we will do that will first find the average length of a candle and reject all other price levels which are closed then twice
this average

240 1
235
230

225 1 | h
i 1

220 I|

1
215 1 I

& |||||- L 4ls |
SR g e TR
205 J ‘ ' - |

200 - £

let's find the average length of a candle i.e. average of high - low

s = 2 * np.mean(df['High'] - df['Low")

Using this number, we will reject the current price level if there is already another price level within the range +- s. For this,
we defined a function isFarFromLevel

Finally, we have reduced the number of price levels and the chart looks like below:



If you want to work on the code and tinker with the code, go to Google Colab https://t.co/G8DuZvWO0g

I have shared the entire code on colab and added references for you to look into.

D: these won't help you become profitable but this will teach you how quant traders think &

automate their day-to-day tasks and quantify certain ideas. If you have any doubt reach out to me in DM.

In Module 4, we will learn about cloud computing and the use of cloud in trading. Until then, happy learning.


https://t.co/G8DuZvWO0g

	Nano Course On Python For Trading ==========================Module 3In this post, I will attempt to teach you how to write an algorithm in python to automatically find support and resistance. We shall use the data we downloaded in module 2.+

