BUZZ CHRONICLES > BUSINESS
Saved by @Mollyycolllinss
See On Twitter

Twitter Thread by Ramin

=% Ramin
%]{% @MalwareRE y

J-!:-"".:IE,"-:"!I;

As part of our commitment to keeping our customers/community protected &
informed, we are releasing a blog that shines light on transition between Stage 1
and 2 of #Solorigate/#SUNBURST campaign, custom Cobalt Strike loaders,
post-exploit. artifacts, I0Cs: https://t.co/bOReHMa63u

Attacker Initial C2 Second C2 Cobalt Strike C2
I 1 [
I 1 1
T i T
OM-PREMISES :
] ; 1
EVIC]
DEVICE i | '
I 1 1
I 1 1
I 1
1

DO @ B

Backdoor connects Cobalt Strike Remote control Hands-on-
to initial C2, sends downloaded via Cobalt keyboard attack
gathered info from a second C2 Strike Beacon on premises

Figure-2.-Diagram-of-transition-between-Stage-1-and-Stage-2-of-the-Solorigate-attacky
Here are some highlights:
The missing link between the Solorigate backdoor and the custom #CobaltStrike loaders observed during the #Solorigate is
an Image File Execution Options (IFEO) Debugger registry value created for the legitimate process dllhost.exe (ATT&CK ID:
T1546.012).

Once the registry value is created, the attackers wait for the occasional execution of dilhost.exe, which might happen
naturally on a system. This execution triggers a process launch of wscript.exe configured to run the VBScript file dropped by
the SolarWinds backdoor (Stage 1).

https://buzzchronicles.com
https://buzzchronicles.com/b/business
https://buzzchronicles.com/Mollyycolllinss
https://twitter.com/MalwareRE/status/1351945613823381506
https://twitter.com/MalwareRE
https://twitter.com/MalwareRE
https://twitter.com/MalwareRE
https://t.co/b0ReHMa63u

S

Metwork

SolarWinds, BusinessLayerHostexe

SolarkVinds. Orion, Core.
BusinessLayer.dll

IDGA] arererediud doi

COMCT

Solorigate

File

®

Registry

(2]

LA Wenchown\ [Fokden 1P firigger] vhe
£ Wik Tk 1 tr andieegs! il

3

[0

backdoor

-

AW Jebderi T Irigger] vin®

©

Process

HELMO] FTChdioat et Diebugger = “wacriph ror

i Sl

4

wcnptewe CuWendowsokder 1
ferigger] b

A SR

e create

Rusclli} sy - WirdowiJ Tolded Ty
Deardeopl i, Te_[akeexpeet]

reqg delote

(6]

HELLR]_ PIFECAihost eee'\D
ehugge

The VBScript in turn runs rundll32.exe, activating the Cobalt Strike loader DLL using a clean parent/child process tree
completely disconnected from the SolarWinds process. Finally, the VBScript removes the previously created IFEO value to
clean up any traces of execution.

On the custom Cobalt Strike Loaders: we identified several second-stage malware, including TEARDROP, Raindrop, and
other custom loaders for the Cobalt Strike beacon. During the lateral movement phase, the custom loader DLLs are dropped
mostly in existing Windows sub-directories.

#TEARDROP, #Raindrop, and the other custom Cobalt Strike Beacon loaders observed are likely generated using custom
Artifact Kit templates. Each custom loader loads either a Beacon Reflective Loader or a preliminary loader that subsequently
loads the Beacon Reflective Loader.

Custom loader DLL (TEARDROP) Type A DLL Type B DLL (Raindrop)
Preliminary loader CODE Section CODE Section
(Artifact Kit)
DATA Section Cobalt Strike
Cobalt Strike Reflective Loader
Reflective Loader Cobalt Strike
Reflective Loader
Beacon
Beacon
Beacon DATA Section

Variant 2: Other custom Cobalt
Strike Beacon loaders

Variant 1: TEARDROP

The TEARDROP variants have an export that contains the trigger for the malicious code (executed in a new thread created
by the export). The malicious code attempts to open a .jpg file (festive_computer.jpg, upbeat_anxiety.jpg, gracious_truth.jpg,
confident_promotion.jpg, etc.).

Next, TEARDROP proceeds to decode & subsequently execute an embedded custom preliminary loader (likely generated
using a Cobalt Strike Artifact Kit template e.g., bypass-pipe.c). In its true form, the preliminary loader is a DLL that has been
transformed & loaded like shellcode.

Custom loader DLL (TEARDROP)

Preliminary loader
(Artifact Kit)

Cobalt Strike
Reflective Loader

Beacon

We came across additional custom loaders for Cobalt Strike’s Beacon that unlike TEARDROP, in which the malicious code
is triggered by an export function, the malicious code in these variants is triggered directly from the DLL'’s entry point.

Variant 2 custom loaders also contain an attacker-introduced export (using varying names) whose only purpose is to call the
Sleep() function every minute.

il e =

; Exported entry 2. _ GetClasterlInf

; Attributes: noreturn

public __ GetClasterInf
__GetClasterInf proc near

sub rsp, 28h
vy

e =

loc 1808284674: ; dwMilliseconds
mov ecx, 60oee

call cs: imp Sleep

jmp short loc_l88284674

__GetClasterInf endp

Figure 7. Example of a custom export function from a Variant 2 loader

Additionally, unlike TEARDROP, these variants do not contain a custom preliminary loader, meaning the loader DLL
de-obfuscates and subsequently executes the Cobalt Strike Reflective DLL in memory.

Custom Loader DLL

Reflective Loader

Beacon

Figure 8. Structure of Variant 2 custom Loader

These custom loaders can be divided into two types:

Type A: Decodes/Loads CS's RL from the DLL’'s DATA section (detected as Trojan:Win64/Solorigate.SC!dha)
Type B: De-obfuscates/Loads RL from the DLL’s CODE section (aka #Raindrop, detected as
Trojan:Win64/Solorigate.SB!dha).

Type A DLL Type B DLL (Raindrop)

CODE Section CODE Section

DATA Section Cobalt Strike
Reflective Loader

Cobalt Strike
Reflective Loader

Beacon
Beacon DATA Section

Figure 9. Two subtypes of the custom Loader

Some observations:

The custom loader DLLs were introduced to compromised systems between the hours of 8:00 AM and 5:00 PM UTC. In one
intrusion, the first 2nd stage custom loader (TEARDROP) was introduced to the environment by
SolarWinds.BusinessLayerHost.exe at ~ 10:00 AM UTC.

The custom loader DLLs dropped on disk carried compile timestamps ranging from July 2020 to October 2020, while the
embedded reflective DLLs carried compile timestamps ranging from March 2016 to November 2017. (synthetic compile
timestamps via custom Malleable C2 profiles?)

20207 The actor did not timestamp the compile time of the custom loader DLLs? Forensic analysis of compromised systems
revealed that in a few cases, the timestamp of the custom loader DLLs’ introduction to systems predated the compile
timestamps of the custom loader DLLs...

Most custom loader DLLs were configured with PE version information that masquerades version information belonging to
legitimate applications and files from Windows (e.g., NETSETUPSVC.DLL), 7-Zip (e.g., 7z.dll), Far Manager (e.g., Far.dll),
LibIntl (e.g., libintl3.dll), etc.

Certain development artifacts were left behind in the custom loader samples. e.qg. the following C++ header (.hpp) path was
observed in a loader compiled from a modified Far Manager source code: c:\build\workspace\cobalt_cryptor_far

(devO71)\farmanager\far\platform.concurrency.hpp

74 00 20 00 63 00 72 00 65 00 61 00 74 00 65 00

20 00 74 00 68 00 72 00 65 00 61 00 &4 00 00 00 i n
63 00 3A 00 S5C 00 62 00 75 00 €9 00 &C 00 &4 0O .d
C 00 77 00 6F 00 72 00 6B 00 73 00 70 00 61 0O -1
63 00 65 00 5C 00 63 00 6F 00 62 00 61 00 &C 00 “dbe
74 00 S5F 00 63 00 72 00 79 00 70 00 74 00 &F 00 s « 0.
72 00 5F 00 66 00 61 00 72 00 20 00 28 00 64 00 |ponyure<Py-Ph N d.
6S 00 76 00 30 00 37 00 31 00 29 00 S5C 00 66 00 [CaANoIariieiny RN 4N
61 00 72 00 6D 00 61 00 6E 00 61 00 67 00 65 00 Sl
72 00 5C 00 €6 00 61 00 72 00 SC 00 70 00 &C 0Q 1

Bl 00 74 00 €6 00 6F 00 72 00 6D 00 2E 00 63 00 Uil o P .
BoF 00 6E 00 63 00 75 00 72 00 72 00 65 00 6E 00 [(e}sPNodi} Ik i I .8
3 00 79 00 2E 00 68 00 70 00 70 00 00 00 00 00 (o5 s T o I « SR
6F 73 3A 34 63 6F 6E 63 75 72 72 65 6E 63 79 3A os::concurrency:
3A 74 68 T2 65 61 64 3L 3A 73 74 €1 72 74 €5 72 :thread::starter

Figure 10. File path for a C++ header file (.hpp) observed in custom Cobalt Strike loader samples

Most Beacon and Reflective Loader instances discovered during our investigation were configured with a uniqgue C2 domain
name, unique Watermark ID, unigue PE compile timestamp, PE Original Name (), DNS Idle IP, User-Agent , HTTP
POST/GET transaction URI, sleep time & jitter factor

Each Beacon instance carries a unique Watermark value. Analysis of the Watermark values revealed that all Watermark
values start with the number ‘3.

0x30343131 0x34353633 0x38303535 0x38383238
0x32323638 0x35373331 0x38353138 0x38383430

The post-exploitation related artifacts, TTPs and MITRE ATT&CK techniques (an extensive list) are best covered/described
under the "Additional attacker tactics, anti-forensic behavior, and operational security” section of the blog:
https://t.co/bOReHMIGV2

Leaving No Stone Unturned: This blog is a collaboration between multiple security, threat intelligence, product, forensic,
SOC, Identity & legal teams from across Microsoft. For more information refer to our dedicated Solorigate Resource Center:
https://t.co/8Swnphedko.

https://t.co/b0ReHMrGV2
https://t.co/8Swnphedko

	As part of our commitment to keeping our customers/community protected & informed, we are releasing a blog that shines light on transition between Stage 1 and 2 of #Solorigate/#SUNBURST campaign, custom Cobalt Strike loaders, post-exploit. artifacts, IOCs: https://t.co/b0ReHMa63u

