
BUZZ CHRONICLES > TECH

Saved by @jacobhtml

See On Twitter

Twitter Thread by Tagir Valeev

Tagir Valeev
@tagir_valeev

Ever wondered how the JVM debugger 'Evaluate' feature works in IDEs? Long ago I

thought that the Java debug interface (JDI) actually allows you to specify the

expression and get back its value.

However, this is not quite possible: there's no Java language compiler inside the JVM. When the process is paused JDI

allows you to read or write any variables and fields or even execute an existing method with given arguments. But nothing

like addition or multiplication.

On the other hand, #IntelliJIDEA debugger allows you to evaluate even statements! You can write there `for`, `if`, `while`,

`switch` - whatever. You can even declare local variables. So how this works?

https://buzzchronicles.com
https://buzzchronicles.com/b/tech
https://buzzchronicles.com/jacobhtml
https://twitter.com/tagir_valeev/status/1360512507744550914
https://twitter.com/tagir_valeev
https://twitter.com/tagir_valeev
https://twitter.com/tagir_valeev


The answer is simple: IDEA debugger has a built-in interpreter for Java! If you access an existing variable or a field, call a

method or instantiate an object, it queries JDI. Otherwise, IDE itself does all the calculations.

The amusing thing is that debugger authors didn't bother to make it as strict as Java itself, so the language inside the

interpreter is a much more permissive version of Java. For example, you don't need to initialize variables there! Default

values like 0 are used automatically.



Of course, final variables could be changed. Why artificial limitations?



Another thing: most of the casts are not necessary. This interpreted Java more resembles dynamically typed languages like

JavaScript. Duck-typing works: if there's a method, we can call it. Even if the highlighter complains.



Switch statements and expressions are more permissive there: you can switch over any type. Also, no default is necessary

for switch expressions. If it's not visited, the evaluation will be successful.



In addition to use any type, you can use any expressions as case labels, not just constants! The first matching branch will be

executed.



Finally, even if your project still uses Java 6 JDK, it doesn't stop you from using new language features. For example, 'var'

declarations and patterns in instanceof work perfectly, because they are interpreted by IDE, not by your JDK. Just ignore

error messages!




	Ever wondered how the JVM debugger 'Evaluate' feature works in IDEs? Long ago I thought that the Java debug interface (JDI) actually allows you to specify the expression and get back its value.

