BUZZ CHRONICLES > TECH
Saved by @jacobhtml
See On Twitter

Twitter Thread by Tagir Valeev

E" Tagir Valeev ’
. @tagir_valeev

Ever wondered how the JVM debugger 'Evaluate’ feature works in IDEs? Long ago |
thought that the Java debug interface (JDI) actually allows you to specify the
expression and get back its value.

£ ryaluate X
Expression: Java ~
("Hello World".length() + 18) * 15| v

Use Ctrl+Shift+Enter to add to Watches
Result:
result = 315 (0x13B)
o Evaluate Close

However, this is not quite possible: there's no Java language compiler inside the JVM. When the process is paused JDI
allows you to read or write any variables and fields or even execute an existing method with given arguments. But nothing
like addition or multiplication.

On the other hand, #IntelliJIDEA debugger allows you to evaluate even statements! You can write there “for’, "if’, "while’,
“switch™ - whatever. You can even declare local variables. So how this works?


https://buzzchronicles.com
https://buzzchronicles.com/b/tech
https://buzzchronicles.com/jacobhtml
https://twitter.com/tagir_valeev/status/1360512507744550914
https://twitter.com/tagir_valeev
https://twitter.com/tagir_valeev
https://twitter.com/tagir_valeev

B rvaluate X

Code fragment: Java~

int sum = 0;
for (int 1
sum += 1i;

].
sun|,

1; 1 <=10; i++) {

Use Alt+Down and Alt+Up to navigate through the history

Result:
result = 55 (0x37)

0 Evaluate Close

The answer is simple: IDEA debugger has a built-in interpreter for Java! If you access an existing variable or a field, call a
method or instantiate an object, it queries JDI. Otherwise, IDE itself does all the calculations.

The amusing thing is that debugger authors didn't bother to make it as strict as Java itself, so the language inside the
interpreter is a much more permissive version of Java. For example, you don't need to initialize variables there! Default

values like O are used automatically.




B0 Fvaluate X

Code fragment: Java~

int sum;
for (int

Use Alt+Down and Alt+Up to navigate through the history

Result:
U result = 55 (0x37)

0 Evaluate Close

Of course, final variables could be changed. Why artificial limitations?



£h Fvaluate X

Code fragment: Java~
final int x = 2;

++X;

++X;

++X;

Use Alt+Down and Alt+Up to navigate through the history
Result:
OUresult = 5 (0x5)

& Evaluate Close

Another thing: most of the casts are not necessary. This interpreted Java more resembles dynamically typed languages like
JavaScript. Duck-typing works: if there's a method, we can call it. Even if the highlighter complains.



B0 Fvaluate X

Code fragment: Java~
Object x = "hello"”;
x.repeat(lﬂ)L

Use Alt+Down and Alt+Up to navigate through the history

Result:
> 0Oresult = "hellohellohellohellohellohellohellohellohellohello”

0 Evaluate Close

Switch statements and expressions are more permissive there: you can switch over any type. Also, no default is necessary
for switch expressions. If it's not visited, the evaluation will be successful.



£h Fvaluate X

Code fragment: Java~

Object obj = String.class;
switch(obj) {

case Integer.class -> "int";
case String.class -> "string";
case Double.class -> "double";

i

Use Alt+Down and Alt+Up to navigate through the history

Result:
VvV OOresult = "string”
“f value = {byte[6]@849} [115, 116, 114, 105, 110, 103]
“f coder=0 (0x0)
f hash = 0 (0x0)

f hashlsZero = false

& Evaluate Close

In addition to use any type, you can use any expressions as case labels, not just constants! The first matching branch will be
executed.



m Evaluate

Code fragment:

double x = 2;

switch(x) {
case Math.sgrt(1) -> "One";
case Math.sqrt(4) -> "Four";
case Math.sqrt(9) -> "Nine";

].

Java ~

Use Alt+Down and Alt+Up to navigate through the history

Result:

JO0 result = "Four”

Evaluate . Close

Finally, even if your project still uses Java 6 JDK, it doesn't stop you from using new language features. For example, ‘var
declarations and patterns in instanceof work perfectly, because they are interpreted by IDE, not by your JDK. Just ignore

error messages!



£ Evaluate X

Code fragment:

var s :Sting = System.getProperty("java.version");
Object obhj = s;

obj instanceof String ptr && str.startsWith("1.6");

Patterns in ‘instanceof' are not supported at language level '6’ :

Module Settings Alt+Shift+Enter More actions... Alt+Enter

Use Alt+Down and Alt+Up to navigate through the history

Result:

OO result = true

2] Evaluate Close




	Ever wondered how the JVM debugger 'Evaluate' feature works in IDEs? Long ago I thought that the Java debug interface (JDI) actually allows you to specify the expression and get back its value.

