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Important paper from Google on large batch optimization. They do impressively
careful experiments measuring # iterations needed to achieve target validation

error at various batch sizes. The main "surprise” is the lack of surprises. [thread]
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Batch Size Batch Size Batch Size
(a) Simple CNN on MNIST {b) Simple CNN on Fashion MNIST {c) ResNet-8 on CIFAR-10
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Batch Size Batch Size Batch Size
{d) ResNet-50 on ImageNet (e) ResNet-50 on Open Images {f) Transformer on LMI1B
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Batch Size Batch Size Batch Size
(g) Transformer on Common Crawl (h) V(GG-11 on ImageNet (i) LSTM on LM1B

Figure 1: The relationship between steps to result and batch size has the same charac-
teristic form for all problems. In all cases, as the batch size grows, there is an initial period
of perfect scaling (indicated with a dashed line) where the steps needed to achieve the error goal
halves for each doubling of the batch size. Then there is a region of diminishing returns that
eventually leads to a region of maximal data parallelism where additional parallelism provides
no benefit whatsoever. AP denotes average precision (see Appendix A).

The paper is a good example of lots of elements of good experimental design. They validate their metric by showing lots of
variants give consistent results. They tune hyperparamters separately for each condition, check that optimum isn't at the
endpoints, and measure sensitivity.

They have separate experiments where the hold fixed # iterations and # epochs, which (as they explain) measure very
different things. They avoid confounds, such as batch norm's artificial dependence between batch size and regularization
strength.



When the experiments are done carefully enough, the results are remarkably consistent between different datasets and
architectures. Qualitatively, MNIST behaves just like ImageNet.

Importantly, they don't find any evidence for a "sharp/flat optima" effect whereby better optimization leads to worse final
results. They have a good discussion of experimental artifacts/confounds in past papers where such effects were reported.

The time-to-target-validation is explained purely by optimization considerations. There's a regime where variance dominates,
and you get linear speedups w/ batch size. Then there's a regime where curvature dominates and larger batches don't help.
As theory would predict.

Incidentally, this paper must have been absurdly expensive, even by Google's standards. Doing careful empirical work on
optimizers requires many, many runs of the algorithm. (I think surprising phenomena on ImageNet are often due to the
difficulty of running proper experiments.)
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