Twitter Thread by Data Professor

Cheat sheet that summarizes #DataScience in 10 pages (Links in the comments below ■)

Data Science Cheatsheet

Compiled by Maverick Lin (http://mavericklin.com) Last Updated August 13, 2018

Probability theory provides a framework for reasoning about likelihood of events.

Experiment: procedure that yields one of a possible set

Sample Space S: set of possible outcomes of an experi-

Event E: set of outcomes of an experiment e.g. event that a roll is 5, or the event that sum of 2 rolls is 7

Probability of an Outcome s or P(s): number that

Probability of Event E: sum of the probabilities of the outcomes of the experiment: $p(E) = \sum_{s \subset E} p(s)$ Random Variable V: numerical function on the out-

of outcomes e.g. repeatedly tossing a die or coin

ment e.g. if tossing a die, S = (1,2,3,4,5,6)

1. for each outcome s, 0 < P(s) < 1

Probability Overview

Terminology

satisfies 2 properties

2. $\sum p(s) = 1$

Multi-disciplinary field that brings together concepts

Two paradigms of data research.

- 2. Data-Driven: Given some data, what interesting problems can be solved with it?

The heart of data science is to always ask questions. Al-

- What can we learn from this data?
- 2. What actions can we take once we find whatever it

Types of Data

Structured: Data that has predefined structures. e.g.

tables, spreadsheets, or relational databases.

Unstructured Data: Data with no predefined structure, comes in any size or form, cannot be easily stored in tables. e.g. blobs of text, images, audio

Quantitative Data: Numerical. e.g. height, weight Categorical Data: Data that can be labeled or divided

into groups. e.g. race, sex, hair color.

Big Data: Massive datasets, or data that contains greater variety arriving in increasing volumes and with' ever-higher velocity (3 Vs). Cannot fit in the memory of a single machine.

Data Sources/Fomats

Most Common Data Formats CSV, XML, SQL, JSON, Protocol Buffers

Data Sources Companies/Proprietary Data, APIs, Government, Academic, Web Scraping/Crawling

Main Types of Problems

Two problems arise repeatedly in data science.

Classification: Assigning something to a discrete set of possibilities. e.g. spam or non-spam, Democrat or Republican, blood type (A, B, AB, O)

Regression: Predicting a numerical value. e.g. someone's income, next year GDP, stock price

from computer science, statistics/machine learning, and data analysis to understand and extract insights from the ever-increasing amounts of data.

1. Hypothesis-Driven: Given a problem, what kind

of data do we need to help solve it?

ways be curious about the world.

is we are looking for?

comes of a probability space Expected Value of Random Variable V: $E(V) = \sum_{s \subset S} p(s) * V(s)$ Independence, Conditional, Compound

Independent Events: A and B are independent iff: $P(A \cap B) = P(A)P(B)$

P(A|B) = P(A)

P(B|A) = P(B) P(B|A) = P(B)Conditional Probability: P(A|B) = P(A,B)/P(B)Bayes Theorem: P(A|B) = P(B|A)P(A)/P(B)Joint Probability: P(A,B) = P(B|A)P(A)Marginal Probability: P(A)

Probability Distributions

Probability Density Function (PDF) Gives the probability that a rv takes on the value x: $p_X(x) = P(X = x)$ Cumulative Density Function (CDF) Gives the probability that a random variable is less than or equal to x: F_X(x) = $P(X \le x)$ Note: The PDF and the CDF of a given random variable

contain exactly the same information.

Provides a way of capturing a given data set or sample. There are two main types: centrality and variability

Centrality

Arithmetic Mean Useful to characterize symmetric distributions without outliers $\mu_X = \frac{1}{n} \sum x$

Geometric Mean Useful for averaging ratios. Always less than arithmetic mean = $\sqrt[n]{a_1 a_2 ... a_3}$

Median Exact middle value among a dataset. Useful for skewed distribution or data with outliers.

Mode Most frequent element in a dataset.

Standard Deviation Measures the squares differences between the individual elements and the mean $\sigma=\sqrt{\frac{\sum_{i=1}^N(x_i-\overline{x})^2}{N-1}}$

Variance $V = \sigma^2$

Interpreting Variance

Variance is an inherent part of the universe. It is impossible to obtain the same results after repeated observations of the same event due to random noise/error. Variance can be explained away by attributing to sampling or measurement errors. Other times, the variance is due to the random fluctuations of the universe.

Correlation Analysis

Correlation coefficients r(X,Y) is a statistic that measures the degree that Y is a function of X and vice versa. Correlation values range from -1 to 1, where 1 means fully correlated, -1 means negatively-correlated, and 0 means no correlation.

Pearson Coefficient Measures the degree of the relationship between linearly related variables

 $\mathbf{r} = \frac{Cov(X,Y)}{\sigma(X)\sigma(Y)}$ Spearman Rank Coefficient Computed on ranks and depicts monotonic relationships

Note: Correlation does not imply causation!

2/ Link to the cheatsheet by Maverick Lin https://t.co/zmLBsypzFm